Sustainable Development Goals (SDGs) Interlinkages Analysis Based on Text Mining

نوع المستند : المقالة الأصلية

المؤلف

Lecturer at Planning Techniques Center- Institute of National Planning.

المستخلص

5 years passed and only 10 years left to achieve Sustainable Development Goals (SDGs), which were seen as an indivisible agenda. Since the launching of SDGs and the work on understanding and analyzing the nature of SDG interlinkages is going, which is vital to break down vertical siloes and to support decision-making process. Lack of integration across various sectors may result in incoherent policies and has been one of the major hindrances sustainable development approaches previously taken. Several methodological approaches for analyzing SDGs interlinkages have been proposed. The linguistic approach is one of the main approaches, in which, the assessment of the interlinkages between SDGs is based on their respective wording such as a keyword search. Once obtained and identified, the usage of such (clear) keywords make no confusion about the existence of interlinkages. Therefore, the assumption, two goals are interlinked if they have at least one thematic area keywords in common. The linguistic approach is applied using traditional methods, which lead to time consuming and inaccurate search process. This paper reviews the previous SDGs interlinkages methods; focusing on the linguistic approach. Also, a new text mining approach has been proposed to identify the SDGs interlinkages. The new text mining method could offer a signpost as a new method to improve process of identifying the SDGs interlinkages. The MICMAC analysis has been applied to further investigate for the SDGs interlinkages and to highlight the interrelationships between SDGs.

منذ إطلاق أهداف التنمية المستدامة والعمل جارى على فهم وتحليل طبيعة الروابط بين أهداف التنمية المستدامة. قد يؤدي عدم التكامل عبر مختلف القطاعات إلى سياسات غير متماسكة وهو الأمر الذي شكل أحد العوائق الرئيسة التي واجهت نهج التنمية المستدامة في السنوات السابقة.
تستعرض هذه الورقة أساليب تحليل الروابط بين أهداف التنمية المستدامة؛ مع التركيز على النهج اللغوي، وتقترح نهج جديد للتنقيب عن النصوص لتحديد الروابط بين أهداف التنمية المستدامة، حيث يمكن لطريقة التنقيب عن النصوص أن تشكل مدخلاً جديداً لتحسين عملية تحديد وتحليل الروابط البينية بين أهداف التنمية المستدامة. وأيضاً تم تطبيق تحليل MICMAC  لمزيد من تعميق البحث عن طبيعة وأبعاد الترابطات، وتسليط الضوء على العلاقات المتبادلة بين أهداف التنمية المستدامة بعضها البعض.

الكلمات الرئيسية


  • Arcade, J., Godet, M., Meunier, F., & Roubelat, F. (2003). Structural Analysis with the MICMAC Method & Actor’s Strategy with MACTOR Method. Futures Research Methodology. Laboratory for Investigation in Prospective Strategy , Paris.
  • Bakhtin, P., Khabirova, E., Kuzminov, I., & Thurner, T. (2020). The future of food production–a text-mining approach. Technology Analysis & Strategic Management, 32(5), 516-528.
  • Buenaño-Fernandez, D., González, M., Gil, D., & Luján-Mora, S. (2020). Text Mining of Open-Ended Questions in Self-Assessment of University Teachers: An LDA Topic Modeling Approach. EEE Access, 8, 35318-35330.
  • Cai, Y., & Xia, C. (2018). Interpretive structural analysis of interrelationships among the elements of characteristic agriculture development in Chinese rural poverty alleviation. Sustainability science, 10(3), 786.
  • Coopman, A., Osborn, D., Ullah, F., Auckland, E., & Long, G. (2016). Seeing the whole: implementing the SDGs in an integrated and coherent way. Paper presented at the Stakeholder Forum. London. UK.
  • Cutter, A., Osborn, D., Romano, J., & Ullah, F. (2015). Sustainable development goals and integration: Achieving a better balance between the economic, social and environmental dimensions. Paper presented at the Stakeholder Forum.
  • Ding, Z., Li, Z., & Fan, C. (2018). Building energy savings: Analysis of research trends based on text mining. Automation in Construction, 96, 398-410.
  • Elder, M. (2016). Strengthening the Linkages Between Air Pollution and the Sustainable Development Goals: Institute for Global Environmental Strategies.
  • Fabbrizzi, S., Maggino, F., Marinelli, N., Menghini, S., Ricci, C., & Sacchelli, S. (2016). Sustainability and food: a text analysis of the scientific literature. Agriculture and agricultural science procedia, 8, 670-679.
  • Galati, F., & Bigliardi, B. (2019). Industry 4.0: Emerging themes and future research avenues using a text mining approach. Computers in Industry, 109, 100-113.
  • Glenn, J. C., & Gordon, T. J. (2009). Futures Research Methodology Version 3.0.
  • Jones-Diette, J. S., Dean, R. S., Cobb, M., & Brennan, M. (2019). Validation of text-mining and content analysis techniques using data collected from veterinary practice management software systems in the UK. Preventive veterinary medicine, 167, 61-67.
  • Keeble, B. R. J. M., & war. (1988). The Brundtland report:‘Our common future’. 4(1), 17-25.
  • Kotu, V., & Deshpande, B. (2019). Data Science: Concepts and Practice (Vol. 2nd Edition): Morgan Kaufmann.
  • Kumar, P., Ahmed, F., Singh, R. K., & Sinha, P. (2018). Determination of hierarchical relationships among sustainable development goals using interpretive structural modeling. Environment, Development Sustainability, 20(5), 2119-2137.
  • Kwartler, T. (2017). Text mining in practice with R: John Wiley & Sons.
  • Le Blanc, D. (2015). Towards integration at last? The sustainable development goals as a network of targets. Sustainable Development, 23(3), 176-187.
  • Le Blanc, D., Freire, C., & Vierros, M. (2017). Mapping the Linkages between Oceans and Other Sustainable Development Goals.
  • Miner, G., Elder IV, J., Fast, A., Hill, T., Nisbet, R., & Delen, D. (2012). Practical text mining and statistical analysis for non-structured text data applications: Academic Press.
  • Miola, A., Borchardt, S., Neher, F., & Buscaglia, D. (2019). Interlinkages and policy coherence for the Sustainable Development Goals implementation. Retrieved from
  • Nunes, A. R., Lee, K., & O'Riordan, T. J. B. g. h. (2016). The importance of an integrating framework for achieving the Sustainable Development Goals: the example of health and well-being. 1(3).
  • OWG, O. W. G. (2014). Open Working Group on Sustainable Development Goals ANNEX 1. Retrieved from

https://sustainabledevelopment.un.org/content/documents/3387Annex_interlinkages_1903.pdf

  • Park, K., & Kremer, G. E. O. (2017). Text mining-based categorization and user perspective analysis of environmental sustainability indicators for manufacturing and service systems. Ecological indicators, 72, 803-820.
  • Rivera, S. J., Minsker, B. S., Work, D. B., & Roth, D. (2014). A text mining framework for advancing sustainability indicators. Environmental modelling software, 62, 128-138.
  • Scharlemann, J. P., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K., . . . Wicander, S. (2020). Towards understanding interactions between Sustainable Development Goals: the role of environment–human linkages. Sustainability Science.
  • Sebestyén, V., Domokos, E., & Abonyi, J. (2020). Focal points for sustainable development strategies—Text mining-based comparative analysis of voluntary national reviews. Journal of environmental management, 263, 110414.
  • Shin, S.-H., Kwon, O. K., Ruan, X., Chhetri, P., Lee, P. T.-W., & Shahparvari, S. (2018). Analyzing sustainability literature in maritime studies with text mining. Sustainability, 10(10), 3522.
  • Siegel, E. (2013). Predictive analytics: The power to predict who will click, buy, lie, or die: John Wiley & Sons.
  • Silge, J., & Robinson, D. (2017). Text mining with R: A tidy approach: " O'Reilly Media, Inc.".
  • Team, R. C. (2018). R: A Language and Environment for Statistical Computing. Retrieved from https://www.R-project.org/
  • (2018). The Sustainable Development Goals Report 2018. United Nations.
  • Vladimirova, K., & Le Blanc, D. (2016). Exploring links between education and sustainable development goals through the lens of UN flagship reports. Sustainable Development, 24(4), 254-271.
  • Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technological Forecasting Social Change 73(4), 334-361.
  • Zhang, F., Fleyeh, H., Wang, X., & Lu, M. (2019). Construction site accident analysis using text mining and natural language processing techniques. Automation in Construction, 99, 238-248.
  • Zhou, X., & Moinuddin, M. (2017). Sustainable Development Goals Interlinkages and Network Analysis: A practical tool for SDG integration and policy coherence: Institute for Global Environmental Strategies.